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Abstract Working memory capacity is one of the most fre-
quently measured individual difference constructs in cognitive
psychology and related fields. However, implementation of
complex span and other working memory measures is gener-
ally time-consuming for administrators and examinees alike.
Because researchers often must manage the tension between
limited testing time and measuring numerous constructs reli-
ably, a short and effective measure of working memory ca-
pacity would often be a major practical benefit in future
research efforts. The current study developed a shortened
computerized domain-general measure of working memory
capacity by representatively sampling items from three
existing complex working memory span tasks: operation
span, reading span, and symmetry span. Using a large archival
data set (Study 1, N = 4,845), we developed and applied a
principled strategy for developing the reduced measure, based
on testing a series of confirmatory factor analysis models.
Adequate fit indices from these models lent support to this
strategy. The resulting shortened measure was then ad-
ministered to a second independent sample (Study 2, N =
172), demonstrating that the new measure saves roughly
15 min (30 %) of testing time on average, and even up to
25 min depending on the test-taker. On the basis of these
initial promising findings, several directions for future
research are discussed.
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Working memory capacity (WMC) is among the most fre-
quently assessed constructs in cognitive psychology and re-
lated fields (e.g., Daneman & Carpenter, 1980; Engle, 2002;
Oberauer, Siif3, Schulze, Wilhelm, & Wittmann, 2000) and has
been defined as the ability to store, recall, manage, and ma-
nipulate information in a highly active state (Engle, 2002).
Under this definition, it is not surprising that WMC is related
to, and highly correlated with, general factors of intelligence,
in particular fluid intelligence (Gf), which involves storing and
transforming information to solve novel and abstract problems
(Ackerman, Beier, & Boyle, 2005; Beier & Ackerman, 2005;
Kane, Hambrick, & Conway, 2005; Oberauer, Schulze,
Wilhelm, & Sii3, 2005). Measures of WMC are also correlat-
ed highly with other measures of complex cognition, such as
reading comprehension and problem solving (Conway et al.,
2005; Daneman & Merikle, 1996; Engle, 2002; Friedman &
Miyake, 2004), as well as with measures hypothesized to
reflect elementary cognitive processes, such as executive at-
tention and executive control (Engle & Kane, 2004; Kane,
Conway, Hambrick, & Engle, 2007). In terms of predicting
real-world outcomes, low levels of WMC have been connect-
ed with a variety of cognitive deficits and clinical diagnoses
(e.g., Attention Deficit Disorder, Alzheimer’s disease, schizo-
phrenia; Redick et al., 2012), and, more generally, WMC and
other cognitive ability measures positively correlate with per-
formance outcomes in educational settings (e.g., GPA: Colom,
Escorial, Shih, & Privado, 2007), occupational settings (e.g.,
job performance: Schmidt & Hunter, 2004; career success:
Judge, Higgins, Thoresen, & Barrick, 1999), and everyday life
(e.g., health outcomes: Deary, Weiss, & Batty, 2010).
Although WMC measures are grounded in theories of
cognition and are useful for predicting important personal
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and societal outcomes, from a practical standpoint, WMC
measures tend to require a great deal of time to administer.
Even batteries of working memory span tasks that are com-
puterized, automated, and administered in groups can easily
take 45 min for groups to complete (Unsworth, Heitz,
Schrock, & Engle, 2005). Therefore, given that researchers
often want to measure a wide array of psychological con-
structs yet are faced with a limited amount of available testing
time (Stanton, Sinar, Balzer, & Smith, 2002), a shorter and
psychometrically sound measure of WMC would be an asset
for future research. To that end, the current study samples
items across three different types of complex working mem-
ory span tasks; then by developing and applying a principled
conceptual and psychometric approach to shortening these
tasks and modeling the data, we create a shortened measure
of WMC.

Working memory span tasks

Out of the various measures of working memory available,
complex memory span tasks have received considerable re-
search attention both within and outside the cognitive psy-
chology literature' (Conway et al., 2005). Daneman and
Carpenter (1980) are widely cited as having developed the
first complex working memory span task, the reading span
task, argued to measure working memory because of its
presentation of both a processing component (i.e., the sen-
tence to be read) and a storage component (i.e., the to-be-
remembered word), which they posited as critical to assessing
individual differences in WMC (see also Engle, Tuholski,
Laughlin, & Conway, 1999). Daneman and Carpenter’s ver-
sion of the reading span task requires examinees to read a
series of 2—6 sentences and for each sentence to make a true/
false judgment about its veracity. After all sentences are
judged, examinees are then asked to recall the last word of
each sentence in the series. The examinee’s reading span score
is the highest set size (number of sentence-word pairs) that
was recalled two out of three trials perfectly.

Following Daneman and Carpenter’s (1980) creation of the
reading span task, a series of alternative measures of complex
span tasks have been developed to assess working memory
capacity (for reviews of these tasks, see Conway et al., 2005;
Unsworth, Redick, Heitz, Broadway, & Engle, 2009). The
common requirement for each of these tasks is the pairing of
a task followed by a to-be-remembered element (e.g., a letter,
word, or object), such that subsequent tasks interfere with the
previous elements presented (Unsworth et al., 2005).
Computerized versions of several classic complex working

! Although we focus on complex span tasks as measures of working
memory, a number of alternative measures exist (see e.g., Cowan et al.,
2005; Oberauer et al., 2000; Was, Rawson, Bailey, & Dunlosky, 2011).
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memory span tasks have been developed (e.g., Redick et al.,
2012; Unsworth et al., 2005, 2009a, b), allowing for quicker
administration times, examinee-driven administration and
time limits, and automatic scoring (Redick et al., 2012). For
example, in a computerized operation span task (Conway
et al., 2005; Unsworth et al., 2005), examinees are given a
series of very simple arithmetic operations. For each opera-
tion, they indicate whether it is true or false, and then they are
provided with a letter to be recalled later (e.g.,2 +7="7,9, Q).
After the series is completed, examinees are then prompted
with a4 x 3 matrix of letters and asked to click on the letters to
be remembered in the order in which they were presented. The
processing (arithmetic operation), decision (true or false),
storage (letter), and recall (letter matrix) phases of the auto-
mated operation span task are each presented on separate
computer screens to minimize rehearsal of the to-be-
remembered elements (see Redick et al., 2012).

In a subsequent study, Unsworth et al. (2009a, b) created
computerized versions of the reading span and symmetry span
tasks. These tasks follow the same general procedure as that
presented for the automated operation span task. For the
computerized reading span task, examinees are asked whether
a presented sentence makes sense (e.g., “The prosecutor ’s
dish was lost because it was not based on fact.”) followed by
letters to be recalled, just as in the operation span task
(Unsworth et al. 2009a, b). For the computerized symmetry
span task, examinees view an 8 x 8 matrix of white and black
squares and determine whether the pattern is symmetrical
along its vertical axis. After this judgment, examinees are
presented with a 4 x 4 matrix of squares in which one cell is
highlighted in red. After the series of matrix presentations,
examinees must then recall the serial order of the positions of
the red cells.

Domain-general versus domain-specific perspectives
of working memory capacity

There are two major theoretical perspectives on what working
memory tasks measure (Hambrick, Engle, & Kane, 2004).
The domain-specific perspective focuses on the overlap be-
tween the specific content of the working memory task and the
specific outcomes of interest. For example, Daneman and
Carpenter (1980) posited that the reading span task predicted
performance on a reading comprehension test, because both
shared reading ability as an underlying core process. But more
broadly, the domain-specific perspective is supported when
convergent and discriminant validity patterns are observed,
such that specific working memory tasks correlate more
strongly with outcomes that require that specific ability versus
those outcomes requiring different specific abilities (e.g.,
Daneman & Carpenter, 1980; Oberauer et al., 2000; Shah &
Miyake, 1996).
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By contrast, the domain-general perspective assumes that
the processing, storage, and recall requirements are common
across specific working memory tasks (not unique to each
task), and it is this commonality that is primarily responsible
for the correlations between working memory and relevant
outcomes. Latent variable modeling operationalizes this per-
spective, such that a general working memory factor is sup-
ported by virtue of the reliable and relatively high correlations
between various verbal and spatial working memory tasks
(e.g., Engle et al., 1999; Kane et al., 2004; see also Engle,
Cantor, & Carullo, 1992; Hull, Martin, Beier, Lane, &
Hamilton, 2008). There is now a great deal of support for
the domain-general perspective. For instance, Kane et al.
(2004) reported that verbal and spatial working memory fac-
tors were highly related, sharing between 70 % and 85 % of
their variance, leaving little room for reliable variance unique
to each factor.

We take a balanced perspective and procedure in building a
short domain-general measure of WMC: even with empirical
support in the literature for the reliability and validity of the
domain-general perspective, it is still important to be sensitive
to the domain-specific perspective and representatively sam-
ple from tasks across numerical, verbal, and spatial modalities
(i.e., operation, reading, and symmetry span tasks, respective-
ly). This balance between empirical and substantive priorities
in measurement is known as controlled heterogeneity in the
cognitive ability domain (Humphreys, 1962), and it is a fun-
damental concept in psychological measurement (Little,
Lindenberger, & Nesselroade, 1999).

A short domain-general measure of working memory
capacity

Diverse areas of psychology are developing short psycholog-
ical scales because of their many potential practical advan-
tages. On the test-taker side, short measures may increase
examinee engagement and conversely may reduce fa-
tigue, careless responding, and attrition (Ackerman &
Kanfer, 2009). On the administrator side, short measures
may conserve time or free up available testing time to
measure other constructs relevant to research and prac-
tice. For the cognitive abilities domain in particular,
short counterparts have been derived for traditional mea-
sures such as the Raven’s Advanced Progressive
Matrices (e.g., Arthur & Day, 1994; Bors & Stokes,
1998) and the Weschler Adult Intelligence Scales (e.g.,
Jeyakumar, Warriner, Raval, & Ahmad, 2004; Miller,
Streiner, & Goldberg, 1996).

We present two studies that reflect a conceptual and psy-
chometric process for developing a viable short computerized
measure of domain-general working memory.

Study 1

Data had been obtained in prior research by the third author
from a large archival sample of participants who completed
the computerized complex span tasks (operation, reading, and
symmetry span; see Redick et al., 2012). The goal of Study 1
was to use these existing data and apply a principled psycho-
metric measure-shortening procedure (to be described) to
develop a short measure of WMC, in hopes that any tradeoffs
in psychometric characteristics that come with measure-
shortening would be minimal and thus recommend the use
of the shortened measure in many research applications.

Method
Sample

The sample included undergraduate students from three colleges
in the southeastern United States (University of North Carolina
Greensboro [UNCG], University of Georgia [UGA], and
Georgia Institute of Technology [GT]), as well as community-
recruited adults around one of these schools (nonGT). The total
dataset included 6,611 participants who completed at least one
of the automated complex span tasks between 2004 and 20009.
The current study used the data from 4,885 of these participants
who completed all three automated complex span tasks
(nunce = 1,258 [25.8 %]; nuga = 1,598 [32.7 %]; ngr =
1,035 [21.2 %]; npongT = 994 [20.3 %]). Of these, demo-
graphic data were available for 4,445 participants who
were 17-35 years of age (M = 20.4, SD = 3.5), and 39.5
% (N = 1,757) were male. Based on a stratified random
sample across these data collection sites, the sample was split
in half. We present the bulk of our results from 50 % of the
sample considered the development sample, which is a large
enough sample to consider results to be stable (N = 2,442).
However, in the interest of replicability and to ensure that our
results do not capitalize on chance, we also briefly summarize
results based on the cross-validation sample (N = 2,443), where
the parameter estimates established on the short WMC measure
for the model in the development sample are applied to the
same model in this independent cross-validation sample.

Measures

For each working memory measure—operation span, reading
span, and symmetry span—participants completed a series of
practice trials consisting of (1) the storage component of the
task alone, (2) the processing component of the task alone, and
(3) the process component followed by the storage component
(set-size 2). In the actual test trials that followed, set-size
orders were randomized within participants, and the time limit
for each processing-storage trial was set to be equal to 2.5
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standard deviations above the mean time for the processing-
only responses in the participant’s practice trials (see Redick
et al., 2012).

Operation span Participants were presented with a set of
arithmetic operations and asked to judge whether each equa-
tion was true or false (approximately half were true). After
each arithmetic operation, participants were presented with an
element (a letter) for recall at the end of the set. Set sizes
ranged from 3-7, with three administrations for each set size
(i.e., 75 total operation-storage pairs).

Reading span Participants were presented with a set of
sentences of approximately 1015 words in length and were
asked to judge whether or not the sentence was sensible
(approximately half were sensible). After each sentence, par-
ticipants were presented with an element (a letter) for recall at
the end of the set. Set sizes ranged from 3-7, with three
administrations for each set size (i.e., 75 total sentence-
storage pairs).

Symmetry span Participants were presented with a set of 8 x 8
matrices of black and white squares and asked to make a
judgment as to whether the matrices were symmetrical down
the vertical axis (approximately half of the matrices were
symmetrical). After each matrix, participants were presented
with a red square positioned in a 4 x 4 matrix for recall at the
end of the set. Set sizes ranged from 2—5, with three admin-
istrations for each set size (i.c., 42 total symmetry-storage
pairs).

Scoring For each combination of span task and set size,
participants received two overall scores (see Redick et al.,
2012). Participants’ absolute scores are the number of trials
in which the participant recalled all elements in the correct
order without error, and participants’ partial-credit scores
incorporate error by adding up the proportions of correctly
recalled elements in each trial (see Conway et al., 2005, for
other alternatives). As might be expected, partial-credit scores
correlated very highly (> .91) with absolute scores, and, thus,
we used participants’ item-level partial-credit scores, which
are generated by the program administering the measure.
Table 1 presents the descriptive statistics and correlations for
the partial-credit scores across the span task scores, where
scores are averaged across all set sizes.

Analysis

Because set sizes for each of these complex working memory
span tasks are presented to each participant in a randomized
order (Redick et al., 2012), we matched participants’ first,
second, and third administrations of each particular combina-
tion of span and set size (hereafter referred to as an item),
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Table 1 Means, standard deviations, and correlations for partial-credit
task scores

WM Task Mean SD 1. 2. 3.
1. Operation span 57.30 13.59 .86
2. Reading span 53.74 15.00 .68 .89

3. Symmetry span 28.06 7.97 52 51 .80

Note. N = 2,442. Span scores are summed across set sizes. Alpha
coefficients are in italics on the main diagonal. All correlations are
statistically significant, p <.001

regardless of specifically where in the series the participant
actually completed the trial.

Measure-shortening procedures Given this large develop-
ment sample (N =2,442), we were able to implement a rational
procedure that shortens the working memory measure across
span tasks while attempting to preserve both its substantive
homogeneity and psychometric integrity. We viewed repre-
sentative sampling of items across the operation, reading, and
symmetry span tasks types as critical to the development of a
domain-general measure of WMC (e.g., Hambrick et al.,
2004; Kane et al., 2004).

The working memory and psychometrics literature in-
formed our overall measure-reduction strategy in three ways.
First, Conway et al. (2005) found that, all other things being
equal in their data, working memory items with larger set sizes
tended to have greater psychometric reliability. However, as a
more general psychometric phenomenon, very easy items
(small set sizes) can create a distribution of scores with ceiling
effects, and very hard items (large set sizes) can create a
distribution of scores with floor effects; therefore, the goal is
to find set sizes that are in between these extreme endpoints to
maximize reliable variance (i.e., accurate discrimination be-
tween people’s measured levels of working memory).
Keeping this in mind, we first removed the three ad-
ministrations of the shortest set size items in each task
(e.g., set size 2 in symmetry span, set size 3 in opera-
tion and reading span); this short measure is associated
with Model 1 that we will test.

Second, even though three administrations of each set size
are typical for complex span measures of WMC (likely a
tradition of the procedure established by Daneman &
Carpenter, 1980), fewer administrations per set size would
obviously reduce the time to complete a measure (see Foster
etal., 2014). We therefore removed the third administration of
all set sizes to determine whether the measure shortened in this
manner would retain appropriate psychometric properties.
This, along with the previous revision to the measure in
Model 1 (i.e., removing the shortest set sizes), results in a
second short measure that is associated with Model 2 that we
will test.
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Finally, the largest set sizes might lead to floor effects as
mentioned, and in addition, large set sizes will typically re-
quire the most time to complete. Therefore, we removed all
items with the largest set size from the operation span and
reading span tasks (i.e., set size 7). Combined with the two
previous measure-shortening strategies (removing the
smallest set sizes and removing the third administration) this
results in a third shortened measure associated with Model 3
that we will test. Table 2 summarizes these three consecutive
measure-reduction steps and their associated models.

Factor analyses Paralleling the measure-shortening strategy
above, we tested and compared a series of confirmatory factor
analysis (CFA) models for each of the progressively reduced
measures and models: Models 1, 2, and 3. Models were
hierarchical, with WMC being the general (second-order)
factor; operation span, reading span, and symmetry span task
scores being specific (first-order) factors; and composite
scores (parcels) of tasks at each set-size serving as indicators
of the specific factors (see Little, Cunningham, Shahar, &
Widaman, 2002). There are 14 parcels: five for operation
span, five for reading span, and four for symmetry span. The
left panel of Fig. 1 depicts the structure of these models.

Note that some parcels were removed in Models 1 and 3 in
that small and large set sizes, respectively, were eliminated;
also, parcels were recomputed for Models 2 and 3 because the
third administration of a given set size was eliminated. After
running these CFAs (using Mplus version 6.11; Muthén &
Muthén, 2010), we conducted a CFA of Model 3 that applies
factor loadings derived from the development sample to the
hold-out cross-validation sample of data (N = 2,443; see
MacCallum, Roznowski, Mar, & Reith, 1994).

Results and discussion
Descriptive statistics and internal-consistency reliabilities

Table 3 presents the item-level descriptive statistics across all
items and set sizes for the computerized operation, reading,

and symmetry span tasks. We also include item-remainder
correlations (IRCs), where a positive correlation means that
a higher score on a given item predicts a higher average score
on the other two items that have the same set size (i.e., the item
is correlated with a “remainder” total score that is not influ-
enced by the item itself). A low IRC (say .10 or less) would
mean that the item does not “belong” to the rest of the items
that reflect the same set size and span task.

Mean scores are the proportion of people who an-
swered correctly, and, as expected, items from shorter
set sizes were easier to answer and had the highest
mean scores across all tasks. The higher mean scores
from these small set sizes led to a ceiling effect (range-
restriction effect), creating smaller standard deviations
and smaller IRCs across span tasks; this ceiling effect,
in turn, is related to high values of skew (>2) and
kurtosis (>4), which can be problematic for latent var-
iable modeling (Kline, 2011). Prior to any deletion of
items and set sizes, the alphas for the full working
memory span tasks were .86 for operation span, .89
for reading span, and .80 for symmetry span; the overall
alpha for the combined tasks (all 42 items) was .93.

Together, the findings in Table 3 serve as a baseline
that provides support for our first step in measure re-
duction: removing items from the lowest set sizes.
Table 4 presents the results of the reliability analyses
for all of the respective shortened measures. As one
would expect mathematically, the alpha coefficients for
each task (and across all tasks) will decrease somewhat
with the removal of items, and, in our case, the largest
difference typically was found between Model 1 (re-
moving the smallest set size) and Model 2 (also remov-
ing the third administration). Most alpha reliability co-
efficients exceeded .70, and many exceeded .75, even in
the shortened measures. Reassuringly, Table 4 indicates
that the drops in reliability were consistent or slightly
less than expectations based on the Spearman-Brown
prophecy formula (see Nunnally & Bernstein, 1994),
and therefore our measure-shortening strategy had no
deleterious effects on the inter-correlation of the remain-
ing items.

Table 2 Measure-reduction

Description

models for automated complex Model Number of total items'
span tasks

Model 0 42

Model 1 33

Model 2 22
Note. ' Ttems refer to individual Model 3 18

administrations of a given set size
length

Baseline model: Include all items from the operation, reading,
and symmetry span tasks included

First reduced model: Remove items from the smallest set size for
operation (set size 3), reading (set size 3), and symmetry
span (set size 2)

Second reduced model: Remove the final administration
across all set sizes

Final reduced model: Remove the largest set size for
operation and reading span (both set size 7)
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Working Memory
Capacity

Set Size
Set Size

Set Size -669
4 616

117 Set Size
3
725
Set Size 764 Reading
Span
s P 736
Set Size
771 4

Set Size 684

734
Set Size
Set Size .709 769 806 791  .758 5
Set Size Set Size Set Size Set Size Set Size
3 4 5 6 7

Fig. 1 N=2,442. Confirmatory factor analysis model for the full-length
complex working memory span tasks (Model 0) versus shortened coun-
terparts (Model 3). Numbers are standardized factor loadings. Full-length
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Confirmatory factor analyses

Building on these findings with respect to reliability, we
tested a two-level hierarchical CFA model as noted pre-
viously and as seen in the panels of Fig. 1. Based on this
CFA, Table 5 presents the results of all the measure-
reduction models. For the baseline model where the mea-
sure is not reduced (Model 0), the chi-squared test was
statistically significant (x> (74) = 501.26, p < .05), indi-
cating poor exact fit for the model. A statistically signif-
icant chi-squared test is not unusual for large sample sizes
(Kline, 2011); therefore, we also provide commonly re-
ported alternative indices of close model fit, where ac-
ceptable close model fit is based on established rules of
thumb (i.e., CFI > .95, RMSEA < .06, SRMR < .08; Hu
& Bentler, 1999). The full measure (Model 0) demonstrat-
ed good model fit across all of these alternative indices
(CFI =.973, RMSEA = .049 [.045, .053], SRMR = .024).
The left panel of Fig. 1 presents the model and the
standardized factor loadings for Model 0.

For all three measure-reduction models, the CFA models
(Models 1-3) also demonstrated a practically significant fit to
the data in terms of these alternative model fit indices (see
Table 5). In addition, the shortest measure (Model 3) had a
non-significant chi-squared value (x* (24) = 32.522, p = .11),
meaning there was good exact fit as well as close fit. Note that
these consecutive measure-reduction models (from Model 0 to
Model 3) are non-nested because some indicators (items) are
eliminated entirely; this means that we are unable to compare
these models statistically using the chi-squared difference test
as is often done. However, the Akaike Information Criterion
(AIC) values can be compared across non-nested models
(Kline, 2011), and as items were removed, the AIC for each
consecutive model suggested an improvement in the tradeoff
between model fit and model parsimony, meaning the CFA
model for the most-reduced measure (Model 3) shows
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Set Size
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861 690
628
Reading Set Size
628
5 741 716

Set Size
5

891
Operation
Span
67

Set Size
4

Set Size Set Size
5 6

model: x* (74) = 501.26, p < .05, CFI = .973, RMSEA = .049 [.045,
.053], SRMR = .024. Shortened model: x> (24) = 32.52, p = .11, CFI =
1999, RMSEA = .012 [.000, .022], SRMR = .010

promise for replicating. (Note, however, that there is no signif-
icance test for the difference between AIC values.) Results in
Table 5 also suggest a trend of increasing improvements in
model fit across models (i.e., decreasing RMSEA and SRMR
values, increasing CFI values). Additionally, the general pattern
of the factor loadings remained large and consistent across
models for the successively reduced measures. Collectively,
these findings generally support our measure-shortening strate-
gy. The right panel of Fig. 1 presents the resulting CFA model
for the final shortened measure (Model 3).

As a final step, we cross-validated the resulting model for
the shortened WMC measures (Model 3) by applying the
factor loadings derived from the development sample to an
independent cross-validation (holdout) sample of N = 2,443
participants (see MacCallum et al., 1994, for this procedure).
The statistically significant chi-squared value alone suggests
rejecting the cross-validated model (x* (32) = 48.86, p <.05),
but as noted earlier, chi-squared values are sensitive to the
large sample sizes. However, large sample sizes also make
indices of close model fit (i.e., conclusions about practical
significance) more interpretable, and, here again, those indices
were well within accepted standards (CFI = .997, RMSEA =
.015 [.005, .023], SRMR = .023). These cross-validation
results (available on request from the corresponding author)
further support the psychometric integrity of a shortened
domain-general measure of working memory.

Study 2

Study 2 investigated the reliability and validity of the short-
ened complex span tasks in an entirely new sample of data. To
this end, we administered these tasks to a sample of under-
graduate students, along with measures of fluid intelligence
(GY). The specific questions we addressed in this study where



Behav Res

Table 3  Item descriptive statistics, corrected item-total correlations,

and reliabilities

Item Mean SD Skew Kurtosis IRC
Operation span
Set Size 3
Admin. 1 90 25 248 5.06 42
Admin. 2 92 22 -2.88 7.53 45
Admin. 3 92 22 -2.89 7.49 A48
Set Size 4
Admin. 1 .85 29 -1.88 2.18 45
Admin. 2 .88 27 222 3.67 51
Admin. 3 .90 .26 -2.49 5.05 .54
Set Size 5
Admin. 1 719 .33 -1.35 .35 51
Admin. 2 .82 .30 -1.59 1.25 .52
Admin. 3 .85 29 -1.82 2.07 .52
Set Size 6
Admin. 1 .70 34 -.80 =72 49
Admin. 2 73 33 -.96 =37 53
Admin. 3 76 32 -1.11 -.05 .55
Set Size 7
Admin. 1 .60 .33 -33 -1.09 51
Admin. 2 .63 .33 -42 -1.04 49
Admin. 3 .64 32 -.50 -91 .53
Reading span
Set Size 3
Admin. 1 .89 24 -2.25 4.22 49
Admin. 2 .88 .26 -2.23 395 49
Admin. 3 .88 .26 -2.16 3.60 .53
Set Size 4
Admin. 1 .84 28 -1.73 1.81 .50
Admin. 2 .84 29 -1.69 1.64 .54
Admin. 3 .84 29 -1.68 1.59 .59
Set Size 5
Admin. 1 78 32 -1.18 .03 .57
Admin. 2 77 32 -1.21 13 .59
Admin. 3 77 .33 -1.17 -.02 .59
Set Size 6
Admin. 1 .69 .33 -.66 -91 .56
Admin. 2 .67 .34 -.62 -.94 .59
Admin. 3 .67 .35 -.64 -.94 .61
Set Size 7
Admin. 1 .58 32 -21 -1.12 .53
Admin. 2 .56 33 -.14 -1.17 .54
Admin. 3 .56 34 -.16 -1.22 .57
Symmetry span
Set Size 2
Admin. 1 91 21 247 5.58 33
Admin. 2 91 23 -2.50 5.67 .39
Admin. 3 91 .23 -2.61 6.19 42

Table 3 (continued)

Item Mean SD Skew Kurtosis IRC
Set Size 3
Admin. 1 18 .31 -1.20 22 44
Admin. 2 .80 31 -1.30 45 A7
Admin. 3 .81 .30 -1.39 71 49
Set Size 4
Admin. 1 .64 .35 -49 -1.12 A7
Admin. 2 .66 .36 -.56 -1.11 49
Admin. 3 .68 35 -.66 -.94 .52
Set Size 5
Admin. 1 49 .35 .14 -1.28 45
Admin. 2 .50 .35 .08 -1.28 A7
Admin. 3 .52 .35 .04 -1.32 A48

Note. N =2,442. IRC = item-remainder correlation. Coefficient alphas are
.86 for operation span, .89 for reading span, .80 for symmetry span, and
.93 across all tasks

whether (1) the shortened measures would have acceptable
internal consistency reliability, and (2) there would be validity
evidence in the form of statistically significant positive corre-
lations between the shortened measures and the Gf measures,
and a moderate-to-strong positive correlation between latent
variables representing WMC and Gf, consistent with previous
research (e.g., Kane et al., 2005).

Method
Participants

Participants were 185 undergraduate students recruited from
the participant pool at Purdue University, a large state univer-
sity in the Midwest. Participants were compensated with
course credit in exchange for their participation. Data from
at least one task were missing for 13 participants due to either
experimenter error or computer problems, leaving the final
sample with N = 172 participants with complete data. The
final sample had an average age of 19.4 years (SD = 1.2) and
was 62.2 % female (N = 107).

Measures

Working memory capacity Participants completed the short-
ened versions of the automated operation, reading, and sym-
metry span tasks. All administration and scoring procedures
were identical to those described in Study 1, with the excep-
tion that each span task included only those items that were
retained for the shortened versions of these tasks. Set sizes for
the operation and reading span tasks ranged from 46, and set
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Mean inter-item correlation

Difference!

Predicted alpha (from full measure)

Alpha (short measure)

Table 4  Alpha coefficients for reduced measures

@ Springer

Symmetry

Symmetry  Total Operation Reading Symmetry Total Operation Reading Symmetry Total Operation Reading

Total Operation Reading

Model

26
29

35
36
35
35

.29
31

24
25

.80
78

.89
.87

.86
.84
77

93

Model 0
Model 1
Model 2
Model 3

.03

.01

.01

.01

.76
.67

.86
.81

.83
77

91

.92

27

30
.29

24
23

.02

.02
.01

.00
.00

.00
-01

.87
.85

.69

.81

.87
.84

76

71

76

71

2,442. Predicted alpha is based on applying the Spearman-Brown prophecy formula to the full measure in predicting the reliability for the short measure. Differences are expressed as (alpha —
predicted alpha). Model 0 = all items included; Model 1 = smallest set size removed; Model 2 = smallest set size and third administration for all set sizes removed; Model 3 = smallest set size, third

Note. N

administration, and largest set size for operation and reading span removed (not applicable to Symmetry Span). ' Difference is based on three-decimal precision and thus may be .01 different from the

observed difference between alphas

sizes for the symmetry span task ranged from 3-5; all partic-
ipants completed two trials at each set size (six items per task).

Paper folding A computerized version of Part 1 of the Paper
Folding test (Ekstrom, French, Harman, & Dermen, 1976)
was administered. A figure representing a square piece of
paper is presented on the left side of the screen, with markings
that indicate the “paper” has been folded and then a hole was
punched through the paper. Participants were asked to select
the answer choice that best represented what that piece of
paper would look like if it were completely unfolded.
Participants were given a maximum of 5 min to complete
the ten items.

Matrix reasoning The current study implemented a comput-
erized version of the Raven’s Advanced Progressive Matrices
(e.g., Raven, Raven, & Court, 1998) as a measure of abstract
reasoning (Gf). The full Raven's consists of 36 matrix-
reasoning items presented in ascending order of difficulty.
For each item, participants were presented with a 3 x3 matrix
of abstract shapes, where the bottom-right panel of the matrix
is omitted. Participants are asked to select among a number of
response alternatives the figure that completes the overall
pattern of the matrix. A participant’s total number of correct
responses determines their scores on the test. For the present
study, we administered only the 18 odd-numbered items from
the Raven’s item pool with a maximum time limit of 10 min,
consistent with past research (e.g., Kane et al., 2004).

Procedure

Participants were tested in laboratory rooms with up to two
other participants. Participants first provided demographic
information, and then completed the following measures in
order: operation span, symmetry span, reading span, Paper
Folding, and Raven’s Advanced Progressive Matrices.”

Results

Table 6 displays descriptive statistics for the shortened span
measures and Gf measures, along with correlations and reli-
ability estimates. Coefficient alpha was .71 for operation span,

2 We wish to report that other data were also collected from a subset of
participants (i.e., self-reported ACT/SAT, GPA, hours worked), and other
tasks were administered (i.e., antisaccade, arrow flankers, change detec-
tion, n-back, and reading comprehension). Note that (1) the short-form
automated span tasks were the first three tasks administered in the
session; and (2) data from some of the other administered measures was
not available for all participants — including only subjects who had
complete data would have resulted in a much smaller sample size than
what is currently reported.
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Table 5 Confirmatory factor analysis models: fit estimates and factor loadings

Model X2 (df) CFI  RMSEA SRMR AIC Operation Reading Symmetry

Range (A\) Mean (\) Range (\) Mean (\) Range(\) Mean (\)
Model 0 501.26 (74) 97 .049[.045,.053] .024 537316 .67-.77 73 71-.81 77 .62 -.74 .69
Model 1 232.88 (41) 98 .0441.038,.049] .018 46417.6 .70 -.78 75 75 -.80 78 .70 - .75 72
Model 2 105.92 (41) 99 .025[.020,.031] .014 33576.0 .61-.69 .67 .66 - .73 71 .63 - .66 .64
Model 3 32.52(24) >.99 .012[.000,.022] .010 28063.8 .64 -.69 .67 .68 - .74 71 .63 - .66 .64

Note. N=2,442. Model 0 = all items included; Model 1 = smallest set size removed; Model 2 = smallest set size and third administration for all set sizes
removed; Model 3 = smallest set size, third administration, and largest set size for operation and reading span removed. CFI = comparative fit index;
RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual; AIC = Akaike information criterion. Ranges and
means of standardized factor loadings are presented for parcels (groups) of set sizes that load on each of the three corresponding span task factors

.54 for reading span, and .59 for symmetry span, and the
coefficient alpha for a composite variable (the total number
correct across all three span tasks) was .76. The span measures
correlated moderately and positively with each other, and with
the Gf measures. Although our interpretation of the shortened
span measures focuses on latent-variable analyses (see be-
low), we note that the correlations among the span tasks and
with the Gf' measures in the current study are generally similar
to previous studies using the full-length span tasks with sam-
ples composed entirely of undergraduate students (e.g.,
Brewer & Unsworth, 2012; Jaeggi et al., 2010; Shelton,
Elliott, Hill, Calamia, & Gouvier, 2009; Unsworth, Brewer,
& Spillers, 2009; Unsworth & Spillers, 2010).

Confirmatory factor analysis

In order to determine whether the reliability of the shortened span
tasks is supported in a new sample, we first conducted a CFA
with the shortened span tasks that is the same as the CFA
presented in the final model of Study 1 (Model 3; see Table 5).
This CFA model demonstrated excellent fit to the data in terms of
both exact fit and approximate fit indices (x> (24) = 30.43,
p > .05, CFI = 978, RMSEA = .038 [.000, .075],
SRMR = .044), thus supporting the reliability of the
shortened span tasks.

We next performed a CFA as a formal test of validity for the
shortened span tasks and the Gfmeasures. Here we specified a

model that correlates two latent factors: WMC, with the three
shortened span measures as indicators, and Gf, with the two
measures of reasoning ability as indicators. There are two
important things to note about this model: First, because
Study 1 and Study 2 demonstrate support for the reliability
of the shortened WMC measures based on CFAs of the ifems,
we now use the WMC measures themselves in CFA as indi-
cators of the WMC latent factor. Likewise, two reliable mea-
sures of Gf are used as indicators. Second, the two factor
loadings for Gf were constrained to be equal, because other-
wise the measurement model for Gf would be “borrowing”
information from the span measures, thus biasing the esti-
mates of the factor loadings and latent correlation between
Gf and working memory (see Kline, 2011). The standardized
solution presented in Fig. 2 will have unequal standardized
factor loadings, however, because the error variance estimates
going into the standardization were freely estimated and not
constrained to equality.

The CFA model demonstrated excellent fit to the data (x*
(5)=3.33, p> .05, CFI=>.999, RMSEA = .000 [.000, .082],
SRMR = .021). Moreover, each span measure had a strong
positive loading on the WMC factor, indicating high factor-
based reliability, and the latent WMC factor correlated mod-
erately and positively with the latent Gf factor (r = .47, p <
.001; bias-corrected bootstrapped 95 % CI = [.30, .66]), indi-
cating convergent validity between ability constructs (note
that this estimate is very close to the meta-analytic correlation

Table 6  Descriptive statistics and correlations for working memory span tasks and ability measures

Task Mean SD Skew Kurtosis 1. 2. 3. 4. 5.
1. Operation span 23.98 5.75 -1.07 .59 71 .67 51 .36 36
2. Reading span 23.25 4.78 -42 =71 42 .54 35 31 26
3. Symmetry span 1591 433 -55 33 33 20 .59 35 25
4, Paper folding 6.69 2.19 -.50 -.34 .24 18 21 .62 .87
5. RAPM 10.08 2.73 .06 -41 25 .16 A1 57 .69

Note. N=172. RAPM = Raven’s Advanced Progressive Matrices. Alpha reliabilities are reported in italics on the main diagonal. Correlations in bold are
statistically significant (p <.05). Correlations corrected for attenuation due to unreliability are reported above the diagonal
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Fig. 2 N = 172. Confirmatory
factor analysis model with
latent variables representing
working memory capacity and
fluid intelligence (GY).
Numbers are standardized
factor loadings and the latent
correlation. x? (5) = 3.33,

p > .05, CFI = > .999,
RMSEA = .000 [.000, .082],
SRMR = .021. **p < .001

ATHE

Working Memory Gf
Capacity

(Reasoning Ability)

Operation
Span

.54
A
Reading Symmetry , Paper
Span Span Raven's Folding

of r=.50 between WMC and Raven’s obtained by Ackerman,
Beier, & Boyle, 2005).

Because of these encouraging psychometric results, it is
worth examining the practical benefit of the short measure in
terms of testing time that is conserved. Based on our current
and past experiences with these measures, the time to read
instructions and practice all of the span tasks (regardless of test
form) is approximately 15 min total, so adding this time to the
testing times reported in Table 7 means that it took 39.3 min to
complete the long form (based on Study 1 data) and 24.7 min
on average to complete the short form (based on Study 2 data),
a saving of 14.6 min (37.1 %). In addition, when the test is
administered in groups (e.g., in a computer lab), the slowest
examinee is essentially what determines the length of the
testing session. Assuming that the slowest person on average
takes 20 min to read instructions (instead of 15) and is at the
95th percentile of the total distribution of times, then this
suggests that group sessions will last 58.0 min for the long
form and 34.6 min for the short form, a saving of 23.4 min
(40.3 %). Although these are rough estimates, they are

reasonable and large enough to suggest that significant ad-
ministration time will be saved in whatever setting the short
form of the complex span working memory tasks is
administered.

General discussion

Scores on a variety of established measures of WMC have
long been known to correlate highly with one another and
demonstrate theoretically appropriate patterns of convergent
and discriminant validity, and, in general, cognitive ability
measures have long been known to predict a variety of im-
portant life outcomes in academic, employment, and personal
domains (Gottfredson, 1997). However, implementation of
WMC measures—in particular, complex span measures—
requires a great deal of time on the part of both administrators
and participants; even in the computerized versions of these
tasks, roughly 20 min per task is a typical administration time

Table 7 Time and time savings for the long versus short working memory span tasks (in min)

Span task Long form Short form Mean time saved
Mean (SD) Upper 95 % ile Mean (SD) Upper 95 % ile

Operation 9.8 (3.8) 16.9 3507 4.8 6.3

Reading 10.3 (3.6) 17.3 39(.8) 53 6.4

Symmetry 42(14) 7.0 2.3 (.5) 32 1.9

Total 24.3 (7.0)* 38.0° 9.7(1.5) 13.0 14.6

Note. Long form: N = 5,003 for Operation span, N = 4,342 for Reading span, N = 4,993 for Reading span; Short form: N = 172. Times above are for
taking the measures themselves; they do not include the fixed time costs of reading instructions and practicing the tasks that, conservatively, adds about
15 min to the total time, regardless of form. * These estimates required the reasonable assumption that the correlation between finish times is similar to
that for the short form and that the distribution of total times (summing across all item response latencies) is normal
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(Unsworth et al., 2005). In some settings, then, it is likely not
sensible or even possible to administer several different com-
plex working memory span tasks, given limited testing time
and the likely research desire to collect additional data (e.g.,
experimental data, data on other constructs). Two of the cur-
rent authors themelves were personally motivated to develop
this shortened WMC measure because of testing constraints
imposed in recent collaborative work (Barch et al., 2009;
Hambrick et al., 2011).

Study 1 took a principled psychometric and conceptual
approach to developing a short measure of WMC that samples
items across three existing computerized complex span tasks.
Our model-based CFA approach to reducing a measure of
WMC was based on a large development sample used to
estimate the model parameters, then the model parameters
were applied to data from a similarly large hold-out cross-
validation sample, yielding supportive model fit results. Study
2 produced evidence for the reliability and validity of the
shortened span measures in a new sample: the CFA of the
shortened working memory measure provided additional sup-
port for its reliability in an independent sample. Furthermore,
the correlation between WMC and Gflatent variables was .47,
within the range expected based on previous research with the
full-length span tasks (e.g., Redick, Unsworth, Kelly, &
Engle, 2012; Unsworth & Spillers, 2010). This psychometric
support is required before considering the practical benefits of
reduced test administration time, where we found a savings of
anywhere from 15-20 min on the test itself, which shaves
about 40 % off of the total administration time.

To summarize, the current study developed and executed a
principled procedure for developing and psychometrically
modeling and testing a shortened measure of overall WMC.
We believe the short measure offers numerous practical ben-
efits to future research by allowing working memory to be
assessed quickly, to allow researchers to measure other con-
structs within the natural limits of testing time and the natural
limits on test-taker’s patience. Note that the shortened WMC
is most obviously used in individual-differences studies, but it
can also be incorporated into experimental designs that take
individual differences into account (e.g., for use as covariates,
a priori in matched designs, or post hoc in propensity-score
matching).

Future research The current research might inspire a num-
ber of additional avenues for future research. First, although a
wide range of set sizes was investigated, future research could
examine a wider range of set sizes (e.g., somewhat larger set
sizes for symmetry span). Naturally, any changes to the mea-
sures would require additional model testing, and the current
research could serve as a general guide for doing so. Future
research in this direction might also include other types of
span tasks (e.g., counting span; Case, Kurland, & Goldberg,
1982; Engle et al., 1999) and might incorporate samples
displaying a wider or different range of working memory

capacity (e.g., age-diverse community samples; samples with
span-specific expertise). The short working memory measure
developed here should also demonstrate expected patterns of
convergent and discriminant validity with other cognitive
constructs such as inhibition (e.g., Hasher & Zacks, 1979;
Miyake et al., 2000) and proactive interference (Lustig, May,
& Hasher, 2001), and motivational constructs such as resource
depletion (Muraven & Baumeister, 2000; Schmeichel, 2007)
and cognitive fatigue (Ackerman & Kanfer, 2009; Ackerman,
2011). Future research might examine specific span tasks in
this nomological network as well, to help researchers with
limited testing time make a decision between administering a
domain-specific complex span task in full, versus administer-
ing the current short measure of overall WMC, which samples
heterogeneously across span tasks, capitalizes on the general
factor, and keeps testing time at an efficient level.

Second, although our measure-shortening efforts were in
the service of developing a domain-general measure of work-
ing memory with heterogeneous content across span mea-
sures, there is certainly additional utility that might be gained
in creating a shorter measure within a specific span task or
domain of working memory. For example, it may be most
appropriate to measure specific span tasks or domains at the
exclusion of other domains within certain clinical populations
or gifted-student populations to assess their level of anticipat-
ed deficits or strengths. Shortened span measures for these
populations might be psychometrically tailored in a different
manner. Likewise, if a shortened measure of general WMC
were ever used to make decisions about individuals, then it
might need to be tailored to ensure high conditional reliability
around the relevant cut-scores.

The final consideration is a forward-looking methodolog-
ical step (and not necessarily a requirement) with regard to our
cross-validation strategy for the shortened measure. We
constrained the factor loadings of the fully reduced model in
our cross-validation sample to equal to those for the develop-
ment sample. Our findings indicated good model fit in the
cross-validation sample; however, other models and ap-
proaches to cross-validation are possible: more restrictive
models might fix the latent variances and possibly the error
variances as well (see MacCallum et al., 1994), or another
approach to cross-validation might be a Bayesian CFA, where
small cross-loadings and residual correlations can be reason-
able to specify and simple to estimate (Muthén & Asparouhov,
2012), and for cross-validation purposes (essentially), the
estimated probability distribution of parameters derived from
a development sample could provide prior information that
informs subsequently estimated distribution in the cross-
validation data set. Also, future research providing informa-
tion on convergent, discriminant, and criterion-related validity
might suggest additional models for reducing the measure,
especially when the goal is to estimate relative patterns of
relationship between variables (vs. predicting individual
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scores), or when jointly considering the measurement and
value of other constructs given limited testing time.

Author note Samuel T. McAbee is currently a visiting assistant pro-
fessor at Illinois Institute of Technology. Our short working memory
measure is available online at http://englelab.gatech.edu/tasks.html.
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